Irreducible 4-manifolds with Abelian Non-cyclic Fundamental Group of Small Rank

نویسنده

  • RAFAEL TORRES
چکیده

(1) (c, χ) = (7n, n), (2) (c, χ) = (5n, n), (3) (c, χ) = (4n, n), (4) (c, χ) = (2n, n), (5) (c, χ) = ((6 + 8g)n, (1 + g)n (for g ≥ 0), (6) (c, χ) = (7n+ (6 + 8g)m,n+ (1 + g)m), (7) (c, χ) = (7n+ 5m,n+m), (8) (c, χ) = (7n+ 4m,n+m), (9) (c, χ) = (7n+ 2m,n+m), (10) (c, χ) = ((6 + 8g)n+ 5m, (1 + g)n+m) (for g ≥ 0), (11) (c, χ) = ((6 + 8g)n+ 4m, (1 + g)n+m) (for g ≥ 0), (12) (c, χ) = ((6 + 8g)n+ 2m, (1 + g)n+m) (for g ≥ 0), (13) (c, χ) = (5n+ 4m,n+m), (14) (c, χ) = (5n+ 2m,n+m), (15) (c, χ) = (4n+ 2m,n+m) and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Geography and Botany of Irreducible 4-manifolds with Abelian Fundamental Group

The geography and botany of smooth/symplectic 4-manifolds with cyclic fundamental group are addressed. For all the possible lattice points which correspond to non-spin manifolds of negative signature and a given homeomorphism type, an irreducible symplectic manifold and an infinite family of pairwise non-diffeomorphic non-symplectic irreducible manifolds are manufactured. In the same fashion, a...

متن کامل

Small Irreducible Symplectic 4-manifolds with Abelian Non-cyclic Fundamental Group

there exists a symplectic irreducible 4-manifold X with π1(X) = G and (c 2 1(X), χh(X)) = (c, χ). The characteristic numbers are given in terms of χh = 1/4(e+σ) and c 2 1 = 2e+3σ, where e is the Euler characteristic of the manifold X and σ its signature. To describe conditions under which smooth 4-manifolds are unique has been a theme in 4-manifold theory for quite some time. Besides its role i...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

Geography and Botany of Irreducible Nonspin Symplectic 4-manifolds with Abelian Fundamental Group

The geography and botany problems of irreducible nonspin symplectic 4-manifolds with a choice of fundamental group from {Zp,Zp⊕Zq,Z,Z⊕Zp,Z⊕Z} are studied by building upon the recent progress obtained on the simply connected realm. Results on the botany of simply connected 4-manifolds not available in the literature are extended.

متن کامل

Geometry, Heegaard splittings and rank of the fundamental group of hyperbolic 3–manifolds

A closed, and say orientable, Riemannian 3–manifold (M, ρ) is hyperbolic if the metric ρ has constant sectional curvature κρ = −1. Equivalently, there is a discrete and torsion free group Γ of isometries of hyperbolic 3–space H3 such that the manifolds (M, ρ) and H3/Γ are isometric. It is well-known that the fundamental group π1(M) of every closed 3–manifold which admits a hyperbolic metric is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009